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Motivation

Safety-critical spacecraft autonomy
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Background - Control Barrier Functions

Control Barrier Functions (CBFs) have recently been used across
disciplines for safety-critical control
CBFs combined with other objectives and Quadratic Programs (QPs) to
generate control inputs online

u = arg min
Au≤b

uTH(x)u+ F (x)u

2 / 24



Background - Relative Degree

For dynamics
ẋ = f(x) + g(x)u

and safe set
S = {x ∈ Rn | h(x) ≤ 0} ,

a typical CBF constraint is

ḣ(x) = Lfh(x) + Lgh(x)u ≤ α(−h(x))

This does not work if h is of high relative degree,
i.e. Lgh(x)u ≡ 0,∀u ∈ Rm

3 / 24



Prior Work

Methods for converting high relative degree h to CBFs
Backstepping approach (Hsu, Xu, Ames, ACC 2015)
Exponentials CBFs (Nguyen, Sreenath, ACC 2016)
Higher Order CBFs (Xiao, Belta, CDC 2019)

CBF applications to objectives with time specifications
Time Varying CBFs (Lindemann, Dimarogonas, CSS Letters 2019)
Prescribed Time CLFs (Garg, Arabi, Panagou, CDC 2019)
CBFs in Planning (Yang, Belta, Tron, ACC 2020)
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Motivation and Contribution

Goal is to develop an online control method that
1 Guarantees safe set invariance for high relative degree hs
2 Accomplishes prescribed time goals for high relative degree hg
3 Avoids converting hs, hg into CBFs and choosing a class-K function
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Problem Formulation

Dynamics ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ Rm

Safe set Ss = {x ∈ Rn | h[i]
s (x) ≤ 0,∀i = {1, · · · , p}}

Goal sets S[j]
g = {x ∈ Rn | h[j]

g (x) ≤ 0} and time intervals [t[j]1 , t
[j]
2 ],

j ∈ {1, · · · , q}

Problem: Determine u(t) online such that x(t) ∈ Ss,∀t ≥ t0 and
x(t) ∈ S[j]

g over the intervals [t[j]1 , t
[j]
2 ],∀j for high relative degree hs, hg.
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Notation

hs = safety set defining function
hg = goal set defining function
c[i] = ith element of c
c(i) = ith time derivative of c

If a subscript omitted, then the equation applies to both hs and hg
If an index is omitted, then any index may be used
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Strategy

Our strategy is to assign a constant rate aq to the first controllable
derivative h(r) (i.e. LgLr−1

f h(x)u 6= 0)

aq(h, x) = arg min
a∈R≤0

|a|

s.t. max
t≥0

(
1
r!at

r +
r−1∑
i=1

1
i!h

(i)(x)ti
)
≤ 0
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Strategy

Example
Suppose h is of relative degree 2. That is,

ḧ(x) = L2
fh(x) + LgLfh(x)u, ∃C ⊆ Rn : LgLfh(x)u 6= 0,∀x ∈ C

Then aq satisfies
max
t

(1
2aqt

2 + ḣ(x)t+ h(x)
)

= 0

=⇒ aq = ḣ(x)2

2h(x)
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Strategy

The constraint ḧ(x, u) = aq(h, x) or ḧ(x, u) ≤ aq(h, x) is affine in u
i.e. ḧ(x, u) ≤ aq(h, x) is of form Au ≤ b:

LgLfh(x)u ≤ aq(h, x)− L2
fh(x)

so u must have a component parallel to LgLfh(x)T

Components of u orthogonal to LgLfh(x)T are unconstrained
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Main Results - One Constraint

Define set S[i]
s,ε = {x ∈ X | 0 ≥ h[i]

s (x) ≥ −ε[i]} for some ε[i] > 0.

Figure: Visualization of a constraint function’s sublevel set and ε-boundary set S[i]
s,ε
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Main Results - One Constraint

Assumption 1
The initial state x0 = x(t0) is such that x0 ∈ Ss and if x0 ∈ bd(Ss), then f(x0) ∈ T (x0, Ss).

One can ensure satisfaction of a single constraint as follows:

Theorem 1

Let M <∞. If u is chosen such that

ḧ[i]
s (x, u) ≤


0 h

[i]
s (x) = 0

M h
[i]
s (x) 6= 0, ḣ[i]

s (x) < 0
aq(h[i]

s , x) h
[i]
s (x) 6= 0, ḣ[i]

s (x) ≥ 0

∀x ∈ S[i]
s,ε, then h[i]

s (x(t)) ≤ 0, ∀t ≥ t0.
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Main Results - Multiple Constraints

Define the Boundary Layer as the set Ss,bd,ε , Ss ∩
( p
∪
i=1

S[i]
s,ε

)

Figure: Visualization of two constraint functions

Proposition 1
Let Ss,bd,ε for some ε ∈ Rp>0 be any
Boundary Layer of Ss. If u is chosen such
that each ḧ[i]

s (x, u) satisfies Theorem 1,
∀x ∈ Ss,bd,ε, ∀i ∈ {1, · · · , p}, then Ss is
forward invariant.
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Main Results - Goal Maintenance

Suppose x(t∗) ∈ S[j]
g . Then staying in S[j]

g is almost the same problem
as staying in Ss.
The difference is that x(t) may leave S[j]

g after t[j]2 .
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Figure: Possible trajectories of h[j]
g (x(t)) when u is chosen as in Theorem 3, both with and without equality, for t ≥ t∗ for

various ḣ[j]
g (x(t∗)) where t∗ = 0.
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Main Results - Goal Maintenance

To formalize the notions in the previous figure, define

am(h, x, ti, tf) ,
−2[h(x) + ḣ(x)(tf − ti)]

(tf − ti)2 .

Assumption 2

The state x(t∗) is such that if x∗ ∈ bd(S[j]
g ), then f(x∗) ∈ T (x∗, S[j]

g ).

15 / 24



Main Results - Goal Maintenance

Theorem 3

If h[j]
g (x(t∗)) ≤ 0, x(t∗) satisfies Assumption 2, and u is chosen such that

ḧ[j]
g (x(t), u) ≤

aq(h
[j]
g , x(t)) if t− 2h[j]

g (x(t))
ḣ

[j]
g (x(t))

≤ t[j]2 and ḣ[j]
g (x(t)) > 0

am(h[j]
g , x(t), t, t[j]2 ) else

∀t ∈ [t∗, t[j]2 ], then h[j]
g (x(t)) ≤ 0, ∀t ∈ [t∗, t[j]2 ].
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Main Results - Goal Convergence

The curve generated by ḧ[j]
g (x(t), u) ≤ am(h[j]

g , x(t), t, T ) guarantees
that h[j]

g (x(T )) ≤ 0, which can be used to enforce convergence to a
goal set.
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Figure: A plot of h[j]
g (x(t)) for a trajectory converging to a goal set
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Spacecraft Application

Spacecraft translation and attitude dynamics

ẋ =


ṙ
v̇

θ̇
ω̇

 =


v

fµ(r) + u1
fθ̇(θ, ω)
u2


Constraints. Let y = r − z for
some fixed z

Proximity to target:
hp(x, z) = ||y||2 − ρ2 ≤ 0
Point at target:
hb(x, z) = cos β − ŵTŷ ≤ 0 where
ŵ is some spacecraft-fixed vector
Avoidance of obstacle:
ha(x, z) = ρ̄2 − ||y||2 ≤ 0

r

zo
ŵ
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Spacecraft Controller

Quadratic program:

u(t) = arg min
u1,u2∈R3×R3

δp,δb∈Rq×Rq

([
uT

1 uT
2
]
H(x)

[
u1
u2

]
+ F (x)

[
u1
u2

]
+

q∑
j=1

[
Jδ,p

(
δ[j]
p

)2
+ Jδ,b

(
δ

[j]
b

)2
])

subject to
Safety constraints
Goal convergence constraints
Goal maintenace constraints
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Spacecraft Results

https://youtu.be/9VmAR6mQoyc
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Spacecraft Results
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Safety Function Values

Figure: The values of the safety constraint functions over simulation time.
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Spacecraft Results

Figure: The values of the goal constraint functions for the 5 targets over simulation time.
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Conclusion

Presented online control method for ensuring safe set invariance and
convergence to goal sets in prescribed time

Introduced boundary layer
Reduced control effort to maintain goal sets

Current/future work
Feasibility under control input constraints/other actuators
Fuel-optimality
Applications to central gravity
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