Quadratic Programs for High Relative Degree Spatial Constraints and Spatiotemporal Specifications with Spacecraft Applications

59th Conference on Decision and Control Jeju Island, Republic of Korea, December 14th-18th 2020

Joseph Breeden, Dimitra Panagou

Department of Aerospace Engineering University of Michigan, Ann Arbor, MI, USA

Motivation

Safety-critical spacecraft autonomy

Background - Control Barrier Functions

- Control Barrier Functions (CBFs) have recently been used across disciplines for safety-critical control
- CBFs combined with other objectives and Quadratic Programs (QPs) to generate control inputs online

$$u = \operatorname*{arg\,min}_{Au \le b} u^{\mathrm{T}} H(x) u + F(x) u$$

Background - Relative Degree

For dynamics

$$\dot{x} = f(x) + g(x)u$$

and safe set

$$S = \{ x \in \mathbb{R}^n \mid h(x) \le 0 \},\,$$

a typical CBF constraint is

$$\dot{h}(x) = L_f h(x) + L_g h(x) u \le \alpha(-h(x))$$

• This does not work if h is of high relative degree, i.e. $L_q h(x) u \equiv 0, \forall u \in \mathbb{R}^m$

Prior Work

- ullet Methods for converting high relative degree h to CBFs
 - Backstepping approach (Hsu, Xu, Ames, ACC 2015)
 - Exponentials CBFs (Nguyen, Sreenath, ACC 2016)
 - Higher Order CBFs (Xiao, Belta, CDC 2019)
- CBF applications to objectives with time specifications
 - Time Varying CBFs (Lindemann, Dimarogonas, CSS Letters 2019)
 - Prescribed Time CLFs (Garg, Arabi, Panagou, CDC 2019)
 - CBFs in Planning (Yang, Belta, Tron, ACC 2020)

Motivation and Contribution

- Goal is to develop an online control method that
 - f 0 Guarantees safe set invariance for high relative degree h_s
 - $oldsymbol{ iny 2}$ Accomplishes prescribed time goals for high relative degree h_g
 - **3** Avoids converting h_s, h_g into CBFs and choosing a class- $\mathcal K$ function

Problem Formulation

- Dynamics $\dot{x} = f(x) + g(x)u, x \in \mathbb{R}^n, u \in \mathbb{R}^m$
- Safe set $S_s = \{x \in \mathbb{R}^n \mid h_s^{[i]}(x) \le 0, \forall i = \{1, \dots, p\} \}$
- Goal sets $S_g^{[j]}=\{x\in\mathbb{R}^n\mid h_g^{[j]}(x)\leq 0\}$ and time intervals $[t_1^{[j]},t_2^{[j]}],$ $j\in\{1,\cdots,q\}$
- Problem: Determine u(t) online such that $x(t) \in S_s, \forall t \geq t_0$ and $x(t) \in S_g^{[j]}$ over the intervals $[t_1^{[j]}, t_2^{[j]}], \forall j$ for high relative degree h_s, h_g .

Notation

- $h_s =$ safety set defining function
- $h_q = \text{goal set defining function}$
- $c^{(i)} = i^{\text{th}}$ time derivative of c
- ullet If a subscript omitted, then the equation applies to both h_s and h_g
- If an index is omitted, then any index may be used

Strategy

• Our strategy is to assign a constant rate a_q to the first controllable derivative $h^{(r)}$ (i.e. $L_g L_f^{r-1} h(x) u \neq 0$)

$$a_q(h, x) = \underset{a \in \mathbb{R}_{\leq 0}}{\operatorname{arg \, min}} |a|$$
s.t.
$$\max_{t \geq 0} \left(\frac{1}{r!} a t^r + \sum_{i=1}^{r-1} \frac{1}{i!} h^{(i)}(x) t^i \right) \leq 0$$

Strategy

Example

Suppose h is of relative degree 2. That is,

$$\ddot{h}(x) = L_f^2 h(x) + L_g L_f h(x) u, \quad \exists C \subseteq \mathbb{R}^n : L_g L_f h(x) u \neq 0, \forall x \in C$$

Then a_q satisfies

$$\max_{t} \left(\frac{1}{2} a_q t^2 + \dot{h}(x) t + h(x) \right) = 0$$

$$\implies a_q = \frac{\dot{h}(x)^2}{2h(x)}$$

Strategy

- The constraint $\ddot{h}(x,u)=a_q(h,x)$ or $\ddot{h}(x,u)\leq a_q(h,x)$ is affine in u
 - i.e. $\ddot{h}(x,u) \leq a_q(h,x)$ is of form $Au \leq b$:

$$L_g L_f h(x) u \le a_q(h, x) - L_f^2 h(x)$$

so u must have a component parallel to $L_q L_f h(x)^{\mathrm{T}}$

ullet Components of u orthogonal to $L_q L_f h(x)^{\mathrm{T}}$ are unconstrained

Main Results - One Constraint

• Define set $S_{s,\epsilon}^{[i]}=\{x\in X\mid 0\geq h_s^{[i]}(x)\geq -\epsilon^{[i]}\}$ for some $\epsilon^{[i]}>0.$

Figure: Visualization of a constraint function's sublevel set and ϵ -boundary set $S^{[i]}_{s,\epsilon}$

Main Results - One Constraint

Assumption 1

The initial state $x_0 = x(t_0)$ is such that $x_0 \in S_s$ and if $x_0 \in \operatorname{bd}(S_s)$, then $f(x_0) \in T(x_0, S_s)$.

• One can ensure satisfaction of a single constraint as follows:

Theorem 1

Let $M < \infty$. If u is chosen such that

$$\ddot{h}_{s}^{[i]}(x,u) \leq \begin{cases} 0 & h_{s}^{[i]}(x) = 0\\ M & h_{s}^{[i]}(x) \neq 0, \ \dot{h}_{s}^{[i]}(x) < 0\\ a_{q}(h_{s}^{[i]}, x) & h_{s}^{[i]}(x) \neq 0, \ \dot{h}_{s}^{[i]}(x) \geq 0 \end{cases}$$

 $\forall x \in S_{s,\epsilon}^{[i]}$, then $h_s^{[i]}(x(t)) \leq 0, \ \forall t \geq t_0$.

Main Results - Multiple Constraints

• Define the Boundary Layer as the set $S_{s,bd,\epsilon} \triangleq S_s \cap \left(\bigcup_{i=1}^p S_{s,\epsilon}^{[i]}\right)$

Figure: Visualization of two constraint functions

Proposition 1

Let $S_{s,bd,\epsilon}$ for some $\epsilon \in \mathbb{R}^p_{>0}$ be any Boundary Layer of S_s . If u is chosen such that each $\ddot{h}_s^{[i]}(x,u)$ satisfies Theorem 1, $\forall x \in S_{s,bd,\epsilon}, \forall i \in \{1,\cdots,p\}$, then S_s is forward invariant.

Main Results - Goal Maintenance

- Suppose $x(t_*) \in S_g^{[j]}$. Then staying in $S_g^{[j]}$ is <u>almost</u> the same problem as staying in S_s .
- The difference is that x(t) may leave $S_q^{[j]}$ after $t_2^{[j]}$.

Figure: Possible trajectories of $h_g^{[j]}(x(t))$ when u is chosen as in Theorem 3, both with and without equality, for $t \ge t_*$ for various $\dot{h}_g^{[j]}(x(t_*))$ where $t_* = 0$.

Main Results - Goal Maintenance

• To formalize the notions in the previous figure, define

$$a_m(h, x, t_i, t_f) \triangleq \frac{-2[h(x) + \dot{h}(x)(t_f - t_i)]}{(t_f - t_i)^2}.$$

Assumption 2

The state $x(t_*)$ is such that if $x_* \in \operatorname{bd}(S_g^{[j]})$, then $f(x_*) \in T(x_*, S_g^{[j]})$.

Main Results - Goal Maintenance

Theorem 3

If $h_g^{[j]}(x(t_*)) \leq 0$, $x(t_*)$ satisfies Assumption 2, and u is chosen such that

$$\ddot{h}_g^{[j]}(x(t),u) \leq \begin{cases} a_q(h_g^{[j]},x(t)) & \text{if } t - \frac{2h_g^{[j]}(x(t))}{\dot{h}_g^{[j]}(x(t))} \leq t_2^{[j]} \text{ and } \dot{h}_g^{[j]}(x(t)) > 0 \\ a_m(h_g^{[j]},x(t),t,t_2^{[j]}) & \text{else} \end{cases}$$

$$\forall t \in [t_*, t_2^{[j]}] \text{, then } h_g^{[j]}(x(t)) \leq 0, \ \forall t \in [t_*, t_2^{[j]}].$$

Main Results - Goal Convergence

• The curve generated by $\ddot{h}_g^{[j]}(x(t),u) \leq a_m(h_g^{[j]},x(t),t,T)$ guarantees that $h_g^{[j]}(x(T)) \leq 0$, which can be used to enforce convergence to a goal set.

Figure: A plot of $h_g^{\left[j\right]}(x(t))$ for a trajectory converging to a goal set

Spacecraft Application

Spacecraft translation and attitude dynamics

$$\dot{x} = \begin{bmatrix} \dot{r} \\ \dot{v} \\ \dot{\theta} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} v \\ f_{\mu}(r) + u_1 \\ f_{\dot{\theta}}(\theta, \omega) \\ u_2 \end{bmatrix}$$

- Constraints. Let y = r z for some fixed z
 - Proximity to target: $h_p(x,z) = ||y||^2 \rho^2 \le 0$
 - Point at target: $h_b(x,z) = \cos \beta \hat{w}^{\mathrm{T}} \hat{y} \leq 0$ where \hat{w} is some spacecraft-fixed vector
 - Avoidance of obstacle: $h_a(x,z) = \bar{\rho}^2 ||y||^2 \le 0$

Spacecraft Controller

Quadratic program:

$$u(t) = \underset{\substack{u_1, u_2 \in \mathbb{R}^3 \times \mathbb{R}^3 \\ \delta_p, \delta_b \in \mathbb{R}^q \times \mathbb{R}^q}}{\min} \left(\begin{bmatrix} u_1^{\mathrm{T}} & u_2^{\mathrm{T}} \end{bmatrix} H(x) \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + F(x) \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \sum_{j=1}^q \left[J_{\delta,p} \left(\delta_p^{[j]} \right)^2 + J_{\delta,b} \left(\delta_b^{[j]} \right)^2 \right] \right)$$

subject to

- Safety constraints
- Goal convergence constraints
- Goal maintenace constraints

Spacecraft Results

https://youtu.be/9VmAR6mQoyc

Spacecraft Results

Figure: The values of the safety constraint functions over simulation time.

Spacecraft Results

Figure: The values of the goal constraint functions for the 5 targets over simulation time.

Conclusion

- Presented online control method for ensuring safe set invariance and convergence to goal sets in prescribed time
 - Introduced boundary layer
 - Reduced control effort to maintain goal sets
- Current/future work
 - Feasibility under control input constraints/other actuators
 - Fuel-optimality
 - Applications to central gravity

Acknowledgements

The authors would like to acknowledge the support of the U.S. National Science Foundation

Quadratic Programs for High Relative Degree Spatial Constraints and Spatiotemporal Specifications with Spacecraft Applications

59th Conference on Decision and Control Jeju Island, Republic of Korea, December 14th-18th 2020

Joseph Breeden, Dimitra Panagou

Department of Aerospace Engineering University of Michigan, Ann Arbor, MI, USA

