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Motivation

o Safety-critical spacecraft autonomy
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Background - Control Barrier Functions

o Control Barrier Functions (CBFs) have recently been used across
disciplines for safety-critical control

o CBFs combined with other objectives and Quadratic Programs (QPs) to
generate control inputs online

u = argminu’ H(z)u + F(z)u
Au<b
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Background - Relative Degree

o For dynamics
&= f(z) +g(z)u
and safe set
S ={zeR"|h(z) <0},

a typical CBF constraint is

h(z) = Lyh(x) + Lyh(z)u < a(—h(z))

o This does not work if h is of high relative degree,
i.e. Lyh(z)u=0,Vu € R™
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Prior Work M

o Methods for converting high relative degree h to CBFs
o Backstepping approach (Hsu, Xu, Ames, ACC 2015)
o Exponentials CBFs (Nguyen, Sreenath, ACC 2016)
o Higher Order CBFs (Xiao, Belta, CDC 2019)
o CBF applications to objectives with time specifications
o Time Varying CBFs (Lindemann, Dimarogonas, CSS Letters 2019)
o Prescribed Time CLFs (Garg, Arabi, Panagou, CDC 2019)
o CBFs in Planning (Yang, Belta, Tron, ACC 2020)
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Motivation and Contribution

o Goal is to develop an online control method that

@ Guarantees safe set invariance for high relative degree h
@ Accomplishes prescribed time goals for high relative degree h,
@ Avoids converting hs, h, into CBFs and choosing a class-KC function
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Problem Formulation M

o Dynamics & = f(z) + g(x)u,z € R",u € R™
o Safe set S, = {x € R" | hlil(x) <0,Vi = {1,--- ,p}}

o Goal sets SY/ = {z € R" | h/!(z) < 0} and time intervals ),
VAS {ilv to 7(]}

o Problem: Determine u(t) online such that z(t) € S;, V¢ > ¢ and
x(t) € Sg[]j] over the intervals [t[lj],tg]],Vj for high relative degree hy, h,,.
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o hys = safety set defining function
o h, = goal set defining function
o cll = i™h element of ¢

o ¢ = it time derivative of ¢

o If a subscript omitted, then the equation applies to both &, and 7,
o If an index is omitted, then any index may be used
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Strategy

o Our strategy is to assign a constant rate a, to the first controllable
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Suppose h is of relative degree 2. That is,

h(z) = L}h(;p) + LgLh(z)u, 3C CR"™: LyLsh(x)u # 0,z € C
Then a, satisfies
max (;ath + h(z)t + h(x)) =0

h(z)*

= )
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o The constraint (x,u) = a,(h,x) or h(z,u) < a,(h,z) is affine in u
o ie. h(x,u) < ay(h,z) is of form Au < b:

L,Lih(z)u < ay(h,z) — L?h(x)

so u must have a component parallel to L,Lh(z)"

o Components of u orthogonal to L,Lh(z)T are unconstrained
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Main Results - One Constraint M

o Define set Sll = {x € X | 0 > hll(z) > —€ll} for some €l > 0.
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Figure: Visualization of a constraint function’s sublevel set and e-boundary set S’
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Main Results - One Constraint M

The initial state xg = x(to) is such that o € S, and if xg € bd(Ss), then f(xg) € T(x0,Ss).

o One can ensure satisfaction of a single constraint as follows:

Let M < oo. If u is chosen such that

0 h(z) =0
Wil (z,u) < { M hi () #0, i(z) <
ag(hs x)  h(x) #£0, hi(z) >

vz € SIL, then hl(z(t)) <0, vt > t,.
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Main Results - Multiple Constraints M

o Define the Boundary Layer as the set S, pq. = Ss N ('61 Sﬂ)
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Figure: Visualization of two constraint functions
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Main Results - Goal Maintenance M

o Suppose z(t,) € Séj]. Then staying in S![}j] is almost the same problem
as staying in S;.

o The difference is that z(¢) may leave S![}j] after t[zj].
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Figure: Possible trajectories of h[gj] (z(t)) when w is chosen as in Theorem 3, both with and without equality, for ¢t > ¢, for

various hg] (z(t+)) where tx = 0.
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Main Results - Goal Maintenance M

o To formalize the notions in the previous figure, define

—2[h(x) + h(z)(t; — t;)]
(ty —ti)? '

am(h7 €, ti) tf) é

The state x(t,) is such that if x, € bd(Sg[]j]), then f(xy) € T(xx, ng ).
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Main Results - Goal Maintenance M

If h[gj] (x(ts)) <0, z(ty) satisfies Assumption 2, and u is chosen such that

g 2hl) (z(#))
b @ (1)

R

W (r), ) < "0
am(B9) 2(t),t,45)  else

(x(t)) <0, Vt € [t,, 15]).

<tV and W (z(t)) > 0

[J]

Vit € [t*,t[Qj]], then hgj

16 /24



Main Results - Goal Convergence M

o The curve generated by ﬁg] (x(t),u) < am(h[gﬂ x(t),t,T) guarantees
that h[gj](x(T)) < 0, which can be used to enforce convergence to a
goal set.
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Figure: A plot of h[gj] (z(t)) for a trajectory converging to a goal set
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Spacecraft Application M

o Spacecraft translation and attitude dynamics

T v

i = U — fﬂ(r) +uy
0 J4(0,w)
w u9

o Constraints. Let y =r — 2 for
some fixed z

o Proximity to target:
hp(z,2) = ||y|I* = p* < 0
o Point at target:
hy(z,2) = cos B — wTH < 0 where
W is some spacecraft-fixed vector
o Avoidance of obstacle:
ha(z,2) = p* = |ly|* < 0
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Spacecraft Controller M

o Quadratic program:

: , N 2
u(t) = argmin [u? ug] H(x) |:u1:| + F(o) |:u1:| I [Jg,p (51[,71)2 + s ((SE]) }
u1,uz €R® xR> U2
8p,6p ERT XRY

subject to

o Safety constraints
o Goal convergence constraints
o Goal maintenace constraints
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Spacecraft Results
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https://youtu.be/9VmAR6mQoyc

Spacecraft Results

Safety Function Values
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Figure: The values of the safety constraint functions over simulation time.
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Spacecraft Results

Goal Function Values
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Figure: The values of the goal constraint functions for the 5 targets over simulation time.

22/24



Conclusion M

o Presented online control method for ensuring safe set invariance and
convergence to goal sets in prescribed time

o Introduced boundary layer
o Reduced control effort to maintain goal sets
o Current/future work

o Feasibility under control input constraints/other actuators
o Fuel-optimality
o Applications to central gravity
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