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1 Geometry with Quaternions

1.1 Quaternion Properties

It is assumed that the reader is already familiar with the distinction between a physical matrix and a

resolved matrix as in [1]. In brief, a physical matrix, such as a physical rotation matrix
→
R, is an operator

that modifies a physical vector
⇀
v . A resolved matrix, such as a rotation matrix R or orientation matrix O

is a 2D array of numbers. In particular, orientation matrices are a tool for transforming the coordinates of
a math vector v̄, where a math vector is a 1D column array of numbers. The rest of this text is consistent
with the notation of [1].

A physical quaternion, denoted q̃ is a mathematical object consisting of a scalar q0 and physical vector
⇀
q :

q̃ = q0 +
⇀
q (1)

Many texts use bold font q for quaternions, but that is avoided here to facilitate handwritten calculations.
It is common to also present quaternions as columns

q̃ =

[
q0
⇀
q

]
. (2)

In this text, the scalar element appears first in the column, but this varies from author to author.
A physical quaternion can be resolved in a frame to produce a 4-element column array by resolving the

vector portion in the chosen frame

q̃|A =

[
q0

⇀
q
∣∣∣
A

]
=


q0
q1
q2
q3

 . (3)

Every quaternion q̃ also has a conjugate quaternion q̃∗ defined as

q̃∗ = q0 −
⇀
q . (4)

At this point, it is worth noting that quaternions are often described as a “hyper-complex number”, q̃ =
q0+q1i+q2j+q3k, where i, j,k are each complex numbers. While this is accurate, we find this characterization
overly limiting as we may wish to resolve physical quaternions in several frames, similar to physical rotation
matrices. To accomplish the same behavior as provided by the hyper-complex number formulation, we
introduce the quaternion product operator ⊗, which behaves as follows

a0 ⊗ b0 = a0b0 , (5)

a0 ⊗
⇀

b = a0
⇀

b , (6)

⇀
a ⊗

⇀

b =
⇀
a ×

⇀

b − ⇀
a ·

⇀

b . (7)
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It follows that the ⊗ operator applied to a quaternion satisfies

ã⊗ b̃ =
(
a0 +

⇀
a
)
⊗
(
b0 +

⇀

b

)
= a0b0 + a0

⇀

b + b0
⇀
a +

⇀
a ×

⇀

b − ⇀
a ·

⇀

b (8)

ã⊗
⇀

b =
(
a0 +

⇀
a
)
⊗

⇀

b = a0
⇀

b +
⇀
a ×

⇀

b − ⇀
a ·

⇀

b (9)

ã⊗ b0 =
(
a0 +

⇀
a
)
⊗ b0 = a0b0 + b0

⇀
a (10)

The ⊗ operator is bilinear, associative, and distributive, but NOT commutative. We can equivalently define
the ⊗ operator for two resolved quaternions

(q̃ ⊗ r̃)|A = q̃|A ⊗ r̃|A =


q0
q1
q2
q3

⊗


r0
r1
r2
r3

 =


q0r0 − q1r1 − q2r2 − q3r3
q0r1 + q1r0 + q2r3 − q3r2
q0r2 − q1r3 + q2r0 + q3r1
q0r3 + q1r2 − q2r1 + q3r0

 . (11)

The quaternion norm is then defined as

∥q̃∥2 = q̃ ⊗ q̃∗ = q̃∗ ⊗ q̃ . (12)

The above equation is one of the few cases where commutativity of ⊗ does hold. Our application for
quaternions in this text is as a representation of frame rotations, which we will show implies that every
quaternion will have norm ∥q̃∥ = 1. In other applications, one can normalize a quaternion by multiplying
by 1

∥q̃∥ . Finally, the quaternion inverse is

q̃−1 =
q̃∗

∥q̃∥
. (13)

The conjugate and the inverse satisfy

(q̃ ⊗ r̃)
∗
= r̃∗ ⊗ q̃∗ , (14)

(q̃ ⊗ r̃)
−1

= r̃−1 ⊗ q̃−1 . (15)

1.2 Frame Rotations

Any two frames FA =
[̂
iA ĵA k̂A

]
and FB =

[̂
iB ĵB k̂B

]
can be related by a unique physical rotation

matrix
→
RB/A, such that FB =

→
RB/AFA. Moreover, any rotation can be expressed (non-uniquely) by an axis

of rotation n̂ and an angle θ. Recall the physical rotation matrix

→
Rn̂(θ) = cos θ

→
I + (1− cos θ)n̂n̂T + sin θn̂× . (16)

An alternative way of storing information about an axis-angle rotation is as a quaternion. Define the axis-
angle physical quaternion as

q̃n̂(θ) = cos

(
θ

2

)
+ sin

(
θ

2

)
n̂ . (17)

It immediately follows that ∥q̃n̂(θ)∥ = 1 for any θ and n̂. Since the axis-angle representation of a rotation is
not unique, it follows that the quaternion representing a frame rotation is not unique either, unlike rotation
matrices. Specifically, q̃ and −q̃ both represent the same rotation. For this reason, many applications
restrict to quaternions with positive scalar elements, which represent short-way rotations, though none of
the following math depends on this choice. The identity quaternion is q̃I = 1, which represents no rotation.

Let q̃ = q̃n̂(θ) be an axis-angle physical quaternion and
⇀
r an arbitrary physical vector, and consider the

following expression

q̃ ⊗ ⇀
r ⊗ q̃∗ =

(
−⇀
q · ⇀r + q0

⇀
r +

⇀
q × ⇀

r
)
⊗
(
q0 −

⇀
q
)

(18)
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= −q0
⇀
q · ⇀r + q0

⇀
r · ⇀q + (

⇀
q × ⇀

r ) · ⇀q + (
⇀
q · ⇀r )⇀q + q20

⇀
r + q0(

⇀
q × ⇀

r )− q0(
⇀
r × ⇀

q )− (
⇀
q × ⇀

r )× ⇀
q

(19)

= (
⇀
q
⇀
q
T
)
⇀
r + q20

⇀
r + 2q0(

⇀
q × ⇀

r ) +
⇀
q × (

⇀
q × ⇀

r ) (20)

=

(
(
⇀
q
⇀
q
T
) + (1− ⇀

q
T⇀
q )

→
I + 2q0

⇀
q
×
+

⇀
q
×2
)

⇀
r (21)

=

(
⇀
q
⇀
q
T
+ (1− ⇀

q
T⇀
q )

→
I + 2 cos

(
θ

2

)
⇀
q
×
+ (

⇀
q
⇀
q
T
−
(
⇀
q
T⇀
q
)→
I )

)
⇀
r (22)

=

(
2
⇀
q
⇀
q
T
+ (1− 2

⇀
q
T⇀
q )

→
I + 2 cos

(
θ

2

)
⇀
q
×
)

⇀
r (23)

=

(
2n̂n̂T sin2

(
θ

2

)
+

(
1− 2 sin2

(
θ

2

))
→
I + 2 cos

(
θ

2

)
sin

(
θ

2

)
n̂×
)

⇀
r (24)

=

(
(1− cos θ)n̂n̂T + cos θ

→
I + sin θn̂×

)
⇀
r (25)

=
→
Rn̂(θ)

⇀
r (26)

That is, a physical quaternion and its conjugate rotate a physical vector identically to a physical rotation

matrix. Let
→
RB/A be the rotation from frame FA to FB, and let n̂ and θ be such that

→
RB/A =

→
Rn̂(θ). We

then use the notation q̃B/A to represent the same rotation q̃B/A = q̃n̂(θ). Suppose there are three frames
FA,FB,FC. Then it holds that

q̃C/A = q̃C/B ⊗ q̃B/A , (27)

which can be proven via the equivalence between q̃B/A and
→
RB/A. Recall that q̃B/A and −q̃B/A represent

the same rotation, and thus both are equivalent to
→
RB/A.

It follows from the axis-angle representation that
→
RB/A

∣∣∣∣
B

=
→
RB/A

∣∣∣∣
A

= RB/A. It similarly follows that

q̃B/A

∣∣
B
= q̃B/A

∣∣
A
, and thus we define

qB/A = q̃B/A

∣∣
B
= q̃B/A

∣∣
A
. (28)

To convert a resolved quaternion to a resolved rotation matrix, one can use the function

R(q) =

1− 2q22 − 2q23 2q1q2 − 2q0q3 2q0q2 + 2q1q3
2q0q3 + 2q1q2 1− 2q21 − 2q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q0q1 + 2q2q3 1− 2q21 − 2q22

 , (29)

where R(qB/A) ≡ RB/A. Note that one may come across equivalent forms of the above matrix in other

literature which use the fact that q20 + q21 + q22 + q23 = 1.
Now consider resolving a quaternion rotation in a frame FA as follows.(

q̃B/A ⊗ ⇀
r ⊗ q̃∗B/A

)∣∣∣
A
= q̃B/A

∣∣
A
⊗ ⇀

r
∣∣∣
A
⊗ q̃∗B/A

∣∣∣
A
= RB/A

⇀
r
∣∣∣
A

(30)

Next, note that if q̃B/A = q̃n̂(θ), then q̃∗B/A = q̃n̂(−θ), so q̃B/A = q̃∗A/B. Thus,

q∗B/A ⊗ ⇀
r
∣∣∣
A
⊗ qB/A = q̃∗B/A

∣∣∣
A
⊗ ⇀

r
∣∣∣
A
⊗ q̃B/A

∣∣
A
= q̃A/B

∣∣
A
⊗ ⇀

r
∣∣∣
A
⊗ q̃∗A/B

∣∣∣
A
= RA/B

⇀
r
∣∣∣
A
= OB/A

⇀
r
∣∣∣
A
. (31)

Thus, quaternion conjugates provide a means to change the coordinates of a resolved vector from one frame
to another frame equivalently to orientation matrices.

Recall that

RC/A =
→
RC/A

∣∣∣∣
C

=
→
RC/B

∣∣∣∣
C

→
RB/A

∣∣∣∣
C

= RC/B

(
OC/B

→
RB/A

∣∣∣∣
B

OC/B
T

)
= RB/AOC/B

T = RB/ARC/B (32)
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whereas
OC/A = RC/A

T =
(
RB/ARC/B

)T
= RC/B

TRB/A
T = OC/BOB/A (33)

It similarly holds that

qC/A = q̃C/A

∣∣
C
= q̃C/B

∣∣
C
⊗ q̃B/A

∣∣
C
= qC/B ⊗

(
q∗C/B ⊗ q̃B/A

∣∣
B
⊗ qC/B

)
= qB/A ⊗ qC/B (34)

and

q∗C/A =
(
qB/A ⊗ qC/B

)∗
= q∗C/B ⊗ q∗B/A (35)

That is, both orientation matrices and resolved quaternion conjugates follow the “slash-and-split” rule, while
resolved rotation matrices and resolved quaternions do not follow this rule.

Note that all of the above rotation formulas assumed that q̃ was an axis-angle rotation and therefore
∥q̃∥ = 1. If instead ∥q̃∥ ̸= 1, then q̃∗ should be replaced with q̃−1. In practice, if q is the result of
numerical integration, then over time ∥q∥ could diverge from 1, in which case using q−1 in place of q∗ may
be appropriate. However, it is often a better choice to enforce that ∥q∥ = 1 within the integration method.

2 Kinematics with Quaternions

It is difficult to directly differentiate the scalar and vector components of a quaternion, so we will instead
use the quaternion rotation formula as a starting point. Let q̃ = q̃B/A for two frames FA and FB, where we

omit the subscript for compactness. Let
⇀
r be a vector fixed in frame FA. Define another vector

⇀
s =

→
R(q̃)

⇀
r = q̃ ⊗ ⇀

r ⊗ q̃∗ . (36)

It follows that
⇀
r = q̃∗ ⊗ ⇀

s ⊗ q̃ . (37)

The derive of
⇀
s is as follows [2].

A•
⇀
s =

A•
q̃ ⊗⇀

r ⊗ q̃∗ + q̃ ⊗ �
�A•

⇀
r ⊗ q̃∗ + q̃ ⊗ ⇀

r⊗
A•
q̃∗ (38)

�
�B•

⇀
s +

⇀
ωB/A × ⇀

s =
A•
q̃ ⊗

(
q̃∗ ⊗ ⇀

s ⊗ q̃
)
⊗ q̃∗ + q̃ ⊗

(
q̃∗ ⊗ ⇀

s ⊗ q̃
)
⊗

A•
q̃∗ (39)

⇀
ωB/A × ⇀

s =
A•
q̃ ⊗q̃∗ ⊗ ⇀

s +
⇀
s ⊗ q̃⊗

A•
q̃∗ (40)

=

(
q̇0+

A•
⇀
q

)
⊗
(
q0 −

⇀
q
)
⊗ ⇀

s +
⇀
s ⊗

(
q0 +

⇀
q
)
⊗

(
q̇0−

A•
⇀
q

)
(41)

=

((
q̇0q0+

A•
⇀
q ·⇀q

)
︸ ︷︷ ︸

= 1
2

A•
(q̃⊗q̃∗)=0

−q̇0
⇀
q + q0

A•
⇀
q −

A•
⇀
q ×⇀

q

)
⊗ ⇀

s

+
⇀
s ⊗

((
q̇0q0+

A•
⇀
q ·⇀q

)
︸ ︷︷ ︸

= 1
2

A•
(q̃⊗q̃∗)=0

+q̇0
⇀
q − q0

A•
⇀
q +

⇀
q×

A•
⇀
q

)
(42)

=

(
−q̇0

⇀
q + q0

A•
⇀
q −

A•
⇀
q ×⇀

q

)
⊗ ⇀

s +
⇀
s ⊗

(
q̇0

⇀
q − q0

A•
⇀
q +

⇀
q×

A•
⇀
q

)
(43)

= (−q̇0
⇀
q + q0

A•
⇀
q −

A•
⇀
q ×⇀

q )× ⇀
s +

⇀
s × (q̇0

⇀
q − q0

A•
⇀
q +

⇀
q×

A•
⇀
q ) (44)

= 2(−q̇0
⇀
q + q0

A•
⇀
q −

A•
⇀
q ×⇀

q )× ⇀
s (45)
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= 2(
A•
q̃ ⊗q̃∗)× ⇀

s (46)

Since this holds for all
⇀
r and all q̃, we conclude

⇀
ωB/A = 2

A•
q̃ ⊗q̃∗ (47)

1

2

⇀
ωB/A ⊗ q̃ =

A•
q̃ (48)

We can also take the derivative as observed in frame FB as follows.

B•
q̃ =

A•
q̃ −⇀

ωB/A × ⇀
q (49)

=
1

2
ωB/A ⊗ q̃ − ⇀

ωB/A × ⇀
q (50)

= −1

2

⇀
q · ⇀ω +

1

2
q0

⇀
ω +

1

2

⇀
ω × ⇀

q − ω × ⇀
q (51)

= −1

2

⇀
q · ⇀ω +

1

2
q0

⇀
ω − 1

2

⇀
ω × ⇀

q (52)

=
1

2
q̃ ⊗ ⇀

ωB/A (53)

The orientation qB/A of a body fixed frame FB with respect to some other frame FA component is
frequently a state variable in a dynamical system, so we require an expression for its derivative. Recall that

A•
q̃ B/A

∣∣∣∣
A

= ˙(
q̃B/A

∣∣
A

)
= q̇B/A = ˙(

q̃B/A

∣∣
B

)
=

B•
q̃ B/A

∣∣∣∣
B

. (54)

Thus, we have two equivalent formulas for q̇B/A. Most often, the angular velocity
⇀
ωB/A is measured in the

body fixed frame FB, so it is more convenient to derive q̇B/A from
B•
q̃ B/A, though both of the above formulas

appear in other literature.

Let ω̄B/A(t) =
⇀
ωB/A

∣∣∣
B
=

ω1(t)
ω2(t)
ω3(t)

. Then the quaternion kinematic equation becomes

q̇B/A =
1

2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0


︸ ︷︷ ︸

=W (t)

qB/A . (55)

Note that W (t) is skew-symmetric, which is one of the rare cases when time-varying linear equations can be
exactly integrated [3]:

qB/A(t1) = exp

(
1

2

∫ t1

t0

W (t)

)
qB/A(t0) . (56)

The above equation is useful because it maintains ∥qB/A(t1)∥ = ∥qB/A(t0)∥. That said, for nonsymmetric
bodies, Euler’s equations of rotational motion (a variant of which is presented in the following section) do not
yield closed form expressions for ω̄B/A(t), so we usually still need to employ numerical integration methods.

3 Spacecraft Attitude Dynamics

We now consider the dynamics for the spacecraft system. Suppose the spacecraft consists of a single rigid
body (easily generalized to multiple rigid bodies) containing r reaction wheels, and subject to external torque
⇀

Lz (thrusters, solar radiation pressure, air drag, etc.). Let JB/z be the moment of inertia of the spacecraft
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without reaction wheels with respect to some point z (either a point with zero-inertial-acceleration or the
center of mass of the combined body+wheels system). Suppose each wheel has axis âi through center of
mass ci, and suppose the moment of inertia of the wheels satisfies

→
JWi/ci =

→
J

⊥

Wi/ci + J
∥
Wi/ci

âiâ
T
i (57)

where J
∥
Wi/ci

is a scalar, and
→
J

⊥

Wi/ci is a matrix satisfying
→
J

⊥

Wi/ci âi =
⇀
0 [4]. Then define

→
JWi/z =

→
J

⊥

Wi/ci −mi
⇀
r
×2

z/ci︸ ︷︷ ︸
=

→
J

⊥

Wi/z

+J
∥
Wi/ci

âiâ
T
i (58)

Let C denote the complete system composed of bodies B and Wi, i = 1, · · · , r. Let FB be a frame fixed
to B and FA some other frame. Let FWi

be wheel-fixed frames where
⇀
ωWi/B = Ωiâi for some scalar rate Ωi.

The total angular momentum of the system with respect to FA is then

⇀

HC/z/A =
→
J B/z

⇀
ωB/A +

r∑
i=1

→
JWi/z

⇀
ωWi/A (59)

=
→
J B/z

⇀
ωB/A +

r∑
i=1

(
→
J

⊥

Wi/z + J
∥
Wi/ci

âiâ
T
i

)(
⇀
ωWi/B +

⇀
ωB/A

)
(60)

=

(
→
J B/z +

r∑
i=1

→
J

⊥

Wi/z

)
︸ ︷︷ ︸

=
→
J P/z

⇀
ωB/A +

r∑
i=1

J
∥
Wi/ci

âiâ
T
i

(
ΩWi/Bâi +

⇀
ωB/A

)
(61)

Assuming z is either a ZIA point or the center of mass of C (which is assumed to be fixed in frame FB) and
FA is an inertial frame, it follows that

⇀

Lz =

A•
⇀

HC/z/A=

B•
⇀

HC/z/A +
⇀
ωB/A ×

⇀

HC/z/A (62)

We then compute the derivative in frame FB as

B•
⇀

HC/z/A =
→
JP/z

B•
⇀
ω B/A +

r∑
i=1

J
∥
Wi/ci

âiâ
T
i

(
Ω̇Wi/Bâi+

B•
⇀
ω B/A

)
(63)

=

(
→
JP/z +

r∑
i=1

J
∥
Wi/ci

âiâ
T
i

)
︸ ︷︷ ︸

=
→
J C/z

B•
⇀
ω B/A +

r∑
i=1

J
∥
Wi/ci

âiΩ̇Wi/B (64)

Note that while a gyro measures angular velocity of the body with respect to an inertial frame such as FA, a
tachometer such as we usually have on the reaction wheels gives measurements with respect to the mounting
frame, in this case the spacecraft bus frame FB. Thus, it makes sense to use ΩWi/B as a state instead of

adding the rotation
⇀
ωB/A of the spacecraft as well. In summary, we have

⇀

Lz =
→
J C/z

B•
⇀
ω B/A +

⇀
ωB/A ×

⇀

HC/z/A +

r∑
i=1

J
∥
Wi/ci

âiΩ̇Wi/B (65)

Now, we treat the wheels as their own individual systems. Each reaction wheel is mounted in a housing
which permits frictionless rotation about the mounting axis âi, and rigidly rotates the wheels with the
spacecraft bus about the other two axes. That is, if all the wheels start at rest and we were to manually spin
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the spacecraft about one of the wheel axes using some other actuator, then the wheel on that axis would
stay at rest because there is no friction. Torque on the axis of rotation âi comes purely from the housing

electronics and is given by
⇀

L
∥

Wi
= uiâi. Torque in other directions may come from the spacecraft structure

and is given by
⇀

L
⊥

Wi
where

⇀

L
⊥

Wi
· âi = 0. The momentum of each wheel about its axis is

⇀

H
∥

Wi/ci/A = J
∥
Wi/ci

âiâ
T
i

(
ΩWi/Bâi +

⇀
ωB/A

)
(66)

The change in momentum is then

⇀

LWi
=

⇀

L
∥

Wi
+

⇀

L
⊥

Wi
=

A•
⇀

H
∥
Wi/ci/A=

B•
⇀

H
∥
Wi/ci/A +

⇀
ωB/A ×

⇀

H
∥

Wi/ci/A (67)

⇀

L
∥

Wi
=

B•
⇀

H
∥
Wi/ci/A (68)

⇀

L
⊥

Wi
=

⇀
ωB/A ×

⇀

H
∥

Wi/ci/A (69)

We are able to separate the above torques because
⇀

H
∥

Wi/z/A is always along âi. Thus,
⇀
ωB/A ×

⇀

H
∥

Wi/z/A

is always orthogonal to âi. The torque
⇀

L
⊥

Wi
is not under our control and is therefore not needed for the

dynamics derivation, though it may be needed elsewhere to determine the required stiffness of the wheel
mountings. Equating the axial torques then yields

uiâi =
⇀

L
∥

Wi
=

B•
⇀

H
∥
Wi/ci/A = J

∥
Wi/ci

âiâ
T
i

(
Ω̇Wi/Bâi+

B•
⇀
ω B/A

)
(70)

ui = J
∥
Wi/ci

(
Ω̇Wi/B + âi·

B•
⇀
ω B/A

)
(71)

In summary (see [5]), all combined we have

→
J C/z

B•
⇀
ω B/A +

r∑
i=1

J
∥
Wi/ci

âiΩ̇Wi/B =
⇀

Lz −
⇀
ωB/A ×

⇀

HC/z/A (72)

J
∥
Wi/ci

âi·
B•
⇀
ω B/A +J

∥
Wi/ci

Ω̇Wi/B = ui (73)
→
J C/z

[
J
∥
W1/c1

â1 · · · J
∥
Wr/cr

âr

]

J
∥
W1/c1

âT1
...

J
∥
Wr/cr

âTr



J
∥
W1/c1

. . .

J
∥
Wr/cr




︸ ︷︷ ︸

=
→
Y

=

[
⇀

Lz −
⇀
ωB/A ×

⇀

HC/z/A
u

]
(74)

The final step is to resolve the above in the FB frame. For compactness, the big matrix on the left hand side

is abbreviated as
→
Y . Let

→
Z =

→
Y

−1

. We will also occasionally break up
→
Z as

→
Z =

[→
Z11

→
Z12

→
Z21

→
Z22

]
. (75)

When resolved,
→
Z11 is a 3×3 matrix, and

→
Z22 is an r×r matrix. Generally, the moment of inertia of the wheels

J
∥
Wi/ci

is much smaller than the smallest eigenvalue of the moment of inertia of the rest of the spacecraft
→
J C/z.
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Thus,
→
Y is approximately block-diagonal. It follows that

→
Z11 ≈

→
J

−1

C/z,
→
Z21

T

=
→
Z12 ≈

→
J

−1

C/z
[
â1 · · · âr

]
,

and
→
Z22 ≈


(
J
∥
W1/c1

)−1

. . . (
J
∥
Wr/cr

)−1

. Thus, it is common to see applications where
→
Y is never

introduced as a single matrix and instead these approximations are used. The term
⇀
ωB/A ×

⇀

HC/z/A is also
often omitted if the maximum expected angular velocity is small.

4 Using Boresight Constraints

The principal constraint used in the author’s other works is the function

h = r̂s/o · r̂p/o (76)

where o is some instrument center point (because of the scale of the problem, we can often assume o is
anywhere on the spacecraft, often the center of mass), s is some point to avoid pointing the instrument
towards (e.g. the Sun) and is potentially time-varying, and p is some point along the instrument boresight
vector fixed in the body frame. Assume we know r̂s/o

∣∣
A
and r̂p/o

∣∣
B
where FB is an instrument-fixed frame

and FA is some other frame. h is a scalar, but we need to resolve the above vectors in the same frame (any
frame) to compute it. One obvious choice is the inertial frame

h = r̂s/o
∣∣T
A
r̂p/o

∣∣
A
= r̂s/o

∣∣T
A
OA/B r̂p/o

∣∣
B
= r̂s/o

∣∣T
A
RB/A r̂p/o

∣∣
B
= r̂s/o

∣∣T
A
R(q̃B/A) r̂p/o

∣∣
B

(77)

Alternatively, we could use the body frame

h = r̂s/o
∣∣T
A
r̂p/o

∣∣
A
=
(
OB/A r̂s/o

∣∣
A

)T
r̂p/o

∣∣
B
= r̂s/o

∣∣T
A
OT

B/A r̂p/o
∣∣
B
= r̂s/o

∣∣T
A
RB/A r̂p/o

∣∣
B
= r̂s/o

∣∣T
A
R(q̃B/A) r̂p/o

∣∣
B

(78)
As expected, resolving in either frame yields the same result.

Because the above constraint considers only a single vector in the body frame rather than a set of three
orthogonal vectors (i.e. a complete frame), much of the math for computing the constraint constants was
done purely for a vector r̂ = r̂p/o. Since r̂ is fixed in the body frame, the dynamics of this vector are

A•
r̂ = �

�B•
r̂ +

⇀
ωB/A × r̂ =

⇀
ωB/A × r̂ (79)

A••
r̂ =

B•
⇀
ω B/A ×r̂ +

⇀
ωB/A ×

(
⇀
ωB/A × r̂

)
(80)

Instead of calculating over all q̃, we run the individual constraint calculations over all r̂, thereby removing

the free variable describing the rotation about r̂. The computations for
⇀
ωB/A and

B•
⇀
ω B/A are still the same

as in the previous section. As with this entire document, one must be careful which frames all the above
vectors are resolved in. At present, the current working version of the code resolves everything in the FB

frame.

5 Example Control Law

Suppose there is a body fixed vector r̂p/o which we want to align with the inertially fixed (or time-varying
and independent of q̃B/A) vector r̂t/o. A popular control law for spacecraft attitude is a PD control law,
which we can develop using an “error” quaternion.

In this method, we propose a command frame FC, which is the frame that results from the shortest
path rotation such that r̂p/o aligns with r̂t/o for some point t. The shortest path is given by an axis-angle
formulation. The axis is easily determined as

⇀
n t = r̂p/o × r̂t/o (81)
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and the angle is
θt = acos

(
r̂p/o · r̂t/o

)
. (82)

Then the quaternion from FB to FC, or the error quaternion is then

q̃C/B = cos

(
θt
2

)
+ n̂t sin

(
θt
2

)
. (83)

Alternatively, if a 3-axis attitude is specified, such as a quaternion q̃C/A, then one can derive the error
quaternion as

q̃C/B = q̃C/A ⊗ q̃∗B/A . (84)

A PD control law may then be

⇀

L = kp
⇀
q C/B + kd

⇀
ωC/B = kp

⇀
q C/B + kd(

⇀
ωC/A − ⇀

ωB/A) . (85)

As this is a linear control law, it is common to saturate θ to a small number to retain approximate linearity.
To implement this control law, we then need to resolve the above vectors in the body frame, which results in

⇀

L

∣∣∣∣
B

= kp sin

(
θt
2

)
n̂t|B + kd

(
OB/A

⇀
ωC/A

∣∣∣
A
− ⇀

ωB/A

∣∣∣
B

)
. (86)

Thus, we want to compute n̂t in frame FB, which means transforming the target vector r̂t/o coordinates into
frame FB. Throughout this controller, it is important to keep track of which frames all the relevant variables
are resolved in.

Finally, suppose we define the command frame via the shortest-path rotation, and now we want to know
what the command frame quaternion is for other purposes. This is one area where the frame definition can
get very important and potentially confusing, as illustrated below. We already have qB/A = q̃B/A

∣∣
B
and we

likely already computed w̃C/B

∣∣
B
for use in the above controller. Then

q̃C/A

∣∣
C
=
(
q̃C/B ⊗ q̃B/A

)∣∣
C

(87)

= q̃C/B

∣∣
C
⊗ q̃B/A

∣∣
C

(88)

= q̃C/B

∣∣
C
⊗
(
q̃∗B/C

∣∣∣
B
⊗ q̃B/A

∣∣
B
⊗ q̃B/C

∣∣
B

)
(89)

= q̃B/A

∣∣
B
⊗ q̃B/C

∣∣
B

(90)

That is, the “slash-and-split” rule does not apply, as previously discussed. In my experience, I have frequently
come across code where the above formula is implemented (usually without code comments), so it is good
to get an intuition for when this occurs. On the other hand, intuition without understanding why the
quaternions appear in this order can easily lead to disaster.
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